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ABSTRACT

Internal filamentary glass darcge caused by high po ~r Q=switched
pulse lasers and filamentary trupping in liquids is analyzed theoretically
in this report. Several models are proposed and discussed for electrostrictively
driven acoustic trapping. An analysis of Kerr effect trapping is also given

for purposes of comparison.

In the acoustic theory, electrostriction is the sound wave driving
force. The sound wave compressions cause focusing of the light wave fields.
The focused light fields in turn cause stronger electrostriction forces. When
the beam power is large enough and the laser pulse duration is approximately
equal to the time required for sound to cross the unfocused beam racius, the
trappiag process runs until the beam is focused to a small radius iimited by
diffraction.

The theoretical trapping thresholds are calculated from the laser
wavelength and the density, refractive index, Young's modulus, and Poisson's
ratio of a uolid material, or the density, refractive index, and speed of sound
of a 1iquid medium. These thresholds agree with experimental glass damage
thresholds tn within experimental error, and they vary the same way with
initial beam size. Computer movies showing the formation of strongly focused
regions are presented. An explanation is given for most of the salient features
observed in the damage phenomenon. Mathematical analvses of various features

of the models are presented with computed graphs.
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SECTION 1

PREFACE

The goal of the research reported here is to continue the develop-
ment of a theory of acoustic beam trapping. The theory is a possible explana- i
tion of the mechanism for internal, filamentary glass damage by lasers. It
may also be an explanation for some of the beam-trapping phenomena observed in

liquids when they are traversed hy a high intensity laser pulse. i

We began developing the theorv in 1965. Sections II and III pre-
sent theoretical results obtained by August 1966.

Section IV covers an agnalytical solution to the beam-trapping equa-
tions for the case in which Kerr effect trapping is the dominant trapping mech-

anism and where electrostrictively driven sound waves are weak or absent.

Section V presents some of our computer results, depicting tha
acoustic beam-trapping phenomenon. An explanation of the salient features nf

the glass damage phenomenon is given.

Section VI presents derivations of formulas used in the computer

programs. It is the summary of work performed i.. the second half of the contract.

L 17
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SECTION II

INTRODUCTION

2.1 A NEW POWER LIMIT

As higher and higher power lasers are developed, basic limitations
in the power-transmitting capability of materials and propagation media are be-
ing discovered, Examples of limitations are electric breakdow . and beam insta-
bility. During our study of gain saturation and other anomalies in stim:lated
Raman effect and in our experimental work ir laser damage to glass, we have

identified a new kind of beam instability, acoustic beam trapping.

Acoustic beaun trapping is caused by the focusing action of electro-
strictively driven acoustic waves, These waves alter the index of refraction
of the nedium by the density changes they cause. All optical matcrials experi-

ence these electrostriction forces and photoelastic effects.

Acoustic beam trapping sets upper limits to beam power that can be
transmitied in important materials such as glass and air, TFurthermore, the
scaling laws for acoustic trapping (power threshold versus beam size and pulse
half~time) differ from the scaling laws for other types of beam instability,
such as Kerr effect or anomalous dispersion trapping. Ir fact, for many trans-
parent materials, there is a beam size and pulse halfetime for which the acoustic

trapping threshold is lower than the thresholds for other known instabilities.

2,2 THRESHOLD PREDICTABLE

At the present time, we can predict the acoustic trapping power
threshold in glassy materials from a knowledge of material properties, wave-
length, pulse half~time, and beam size. There is a minimum power level
for each material which can be calculated from tabulated material properties

and the laser wavelength,

L
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2.3 RECONCILABLE WITH STEADY STATZ TRAPPING THEORY

We have also shown that for any given beam size and type of material,
there is a maximum average rate of increase of power that can be transmitted
vicnout causing acoustic beam trapping. So long as power is a.Jed to a beam at
a slower rate than this, it is nossible in principle to reach the steady state
trapping threshold predicted by; Chiao, Garmire, and Townes (Ref, 1),

2.4 SCALING LAWS

Figure 1 il1listrates tha scaling laws for three differeut effects
that limit the ability of an optical material to transmit a leser beam,. In
the graph, total beam power is plotted versus beam radius on log-~log scales.,
The three effects are electric field breakdown, Kerr effect trapping and acous-

tic trapping.
For electric field breakdown, as in laser-induced "air sparks,"

Power Threshold { nstant for) Beam)z

for Breakdown Material adiu

On the log-log plot, this power threshold is a line with a slope of 2, Thus,
electric field bre~“down limits the material to transmission of power levels

and heam sizes in the right-hanl portion of tke graph.

For Kerr cffect trapping, as shown by Chiao, Garmire, and Townes
(Ref. 1)

Pouwer Threshold for Constant for)

Kerr Effect Trapping (We elength) Material
Since the threshold is indepenZent of beam size, it appears as a horizontal line

en tha graph. For transmission without Kerr effect trapping, the beam power

level must be below the Kerr effect threshold,

Together, Kerr effect trapping and electric field breakdown limit
beam transmission to beam sizes and power levels in the lower right portion of

the graph. Br h of the effects are virtually independent of the pulse half~

time.

v
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Figure 1. Scaling Laws for Kerr Effect Trapping,
Breakdown, and Acoustic Trapping.
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The acoustic trapping threshold .an be calculated as in Section III
as long as the laser pulse half-time, p, is less than the time required for

sound to cross the beam radius. The scaling law for acoustic trapping is

Powver Threshold for - (Wavelen th)2 ( Constant for ° {Beam Radius)2
Acoustic Trapping 8 Material ./ (Pulse Half-time)“

for the limiting case of a ve'y short pulse or a very large beam. If the pulse
half-time 1s held constant, the threshold power can be plotted ve=<sus beam size
as shown in the graph. The acoustic trapping power threshold curve flattens out

at the bottom, at the minimum power level. This minimum power level, P

min’ 1s

characteri.ri< only of the material and the wavelength.

For the domain in which the pulse half-time is longer than the time
T required for sound to cross the beam, the acoustic trapping threshold remains
at Pmin' This power level can be exceeded only if the power does not increase

more rapiily than Pmin/T in any time T.

If the pulse half-time is increased by a numerical factor, and the
beam radius is increased by the same factor, the power threshold remains con-
stant. Thus, in the log-log graph, the curve is shifted to the right by the
log of the numerical factor by which the beam radius is increased. Thus the

graph shows three extra curves shifted by factors of 10, 100, and 1000.

In some materials the Kerr-effect trapping threshold is lower than
the minimum power level for acoustic trapping. In these materials Kerr effect
trapping will occur before acoustic trapping. However, most common optical
materials have a critical power level lower than the Kerr effect trapping thresh-

old. For these materials there will always be a domain of beam size and pulse

half-time in which acoustic beam trapping sets the maximum transmittable

power for the material.

2.5 TYPICAL RESULTS FOR GIASS

Acoustic trapping is an important cause of laser damage to optical
glass, as shown in experiments performed by Steinberg, Atwood, Lee, and Ward

(Ref. 2). The theoretical trapping threshold is compared with the experimental
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damage threshold in Figure 2. Generally, the trapping threshold is below the
experimental damage threshold points, as expected. In particular, note the

experimental damage threshold curve for dense flint, The left, lower portion

has a slope of 2. In that region, the cause of damage is probably electric

breakdown. The right, upper portion fits the curve for acoustic rrapping to ;

(Lt il

within the experimental repeatabilit:. and it scales the same way. For fused
silica and BK-7 the agreement between the acoustic trappirg threshold and the

measured damage threshold is even better.

The experimental results are not attribu*able to Kerr effect trap=-

ping because of the dependence on bear size. Also, in glass, Kerr effect is
so weak that the power threshold for Kerr effect trapping is 4 megawatts, which
is above the top of the graph.

ol
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SECTION III

DERIVATION OF THE ACOUSTIC
BEAM TRAPPING THRESHOLD

3.1 THE DRIVING FORCE

Electrostriction is the force exerted by an electric field on a
material medium, when the force is proportional to the squire of the field.

The net body forc. is then proportional to the power intensity gradient, in

a lossless medium. The relevant permittivity ratio at optical frequencies is

the square of the refractive index. Thus, the net body force f per unit

volume due to the light beam is (Ref. 3)

£ = (1/6n c) (nz + 2) (nz -1) oI

Thus a cylindrical beam wiii J-ive a radially propagating sound wave,

3.2 THE PHOTOELASTIC EFFECT
The refractive index change An due to small acoustic compressions

is defined as

fn=n-n = (p - po) 3n/§p

Assuming constant polarizability per molecule, An/ﬁp may be calculated by

differentiating the Clausius-Mosotti relation. Then we obtain
;o= (/6n)m: D@ -1 o0
(o] (o] (o]

where g is the normalized compression.

o= - p,)/p,

dse
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Other effects, such as the Kerr effect, may add to An. They will
not have the same distribution as acoustic compression, in general, nor will
they vary the same way with beam size. However, they can be added to An later.

Let us ignore them for the present.

3.3 THE LASER BEAM

For the purpose of this discussion, the laser pulse is represented
by two impulses of equal energy. Each impulse has a Gaussian radial intensity
distribution. The radius is measured to the point where the intensity drops
to 1/e of the peak intensity. The beam is circularly symmetrical and gently

focused. At the focts the intensity distribution is

I(r,t) = (W/=n wz) exp (-rzlwz)[b (t) + 6(t-At)] /2

where W is the energy of two impulses. The two impulses are separated by a
time, At, equal to 2/3 the half-height duration or half-time, p, of the laser

pulse. Thus if the physical laser pulse has a Gaussian time distribution, the

two impulses will occur at the centroids of the two halves of the physical pulse.

The temporal intensity distribution is shown in Figure 3, and the
spatial intensity distribution is sketched in Figure 4. The resulting force

distribution is given in Figure 5.

3.4 THE ACOUSTIC WAVE

The electrostrictive force drives a radially propagating acoustic
wave, Usually when acoustic beam trapping occurs the boundaries of the mate-
rial are so far from the beam center that the trapping event occurs sooner
than sound can be reflected from the boundaries. Hence, the acoustic wave

equation applies with the following conditions:

1) Circular symmetry

2) Infinite homogeneous isotropic medium

3) Solution-at the beam center is well behaved
4) Solution at infinite radius is zero

5) Solution is not a function of z (paraxial beam case)

10
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ﬁs
Gaussian Temporal Two-Impulse
Intensity Distribution /\ ,\ Approximation
‘——-"’_"7

N

t
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=0 t=04t
— *1 Half-height

Duration
or Half-time p

Figure 3. Laser Pulse Temporal Intensity Distribution,
and the Two-Impulse Approximation.
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The acoustic wave equation can be solved for the case of an impulse
driving force. Gince the equation is linear, it is convenient to use dimen-

sionless variables and a normalized impulse.

Let the dimensionless radial coordinate be x, the radius measured

in units of the initial fccused beam radius w;
x =r/w

There is a characteristic acoustic respouse time. T, equal to the time re-

quired for sound to traverse the beam radius;
T =w/v

where v is the speed of sound for a two-dimensional compression wave.

/2

9 e (Y/Zpo)l a- ot

(1)
Here Y is Young's modulus and ¢ is Poisson's ratio for solid media.
Tat the dimensionless time variable be 7, time measured in units of T.

T =t/T = (v/w) t

This choice of units makes the velocity of sound equal unity in

the wave equation. Also, the acoustic velocity U is normalized by the velocity
of sound, and the acoustic displacement T is normalized by w. The acoustic

compression ¢ is the negative divergence of the displacement:
o= V-0

where ﬁ = ;/w. Differentiating with respect to 7, we have
d0/dT = -V« /3T

where 3U/31 = u/v

13
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Thz initial rate of change of compression distribution appears in

Figure 6.

When the electrostrictive force acts impulsively on 2 medium {ni-
tially at rest, there is no immediate displacement or compression. The ini-
tial velocity and initial rate of change of compression may be decduced from

conservation of momentum,
o+

i? dt = po

The compression ¢ is a function of radius and time only. To sum

= (x,04)

up, the problem is to solve the acoustic wave equation:

2 2
3 ald7

<
Q
4

subject to

o(x,7)

1) o
2) 0<X,0) =0

3 30(x,0)/Ar = AL - x2) exp (-x2)

where
A = (W/3m cvp w3) (n2 + 2) (n2 -1)
o %o o 0

4 g0, £

5) O'(CD)T)'—'O

The equation and all of the conditinns except (3) are satisfied
by g (x, 7) = (B/A)Jo(yx) sin (yr) where B and y are arbitrary. A linear
superposition of solutions will satisfy condition (3) as well. The correct
zombination of solutions g(y) is given by the Hankel transform (not the

Fourier transform because of circular symme*ry). The weight function is x

"

i

sy
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and the eigenfunctions are Jo(yx) corresponding to 1 and sin (xy) or cos (yx)

for a Fourier transform. Thus,

i}

g(y) r .g !-A(l - gz) exp (-gz) TJO(gy)dg

o}

i

A(yzitl) exp (-y2/4) ;

This distribution is plotted in Figure 7. Now superposition is

applied to obtain the solution.

r ® 2 2 .
o(x,7) = A (y /8) exp (-y /4) J (yx) sin (y71) dy
"o

This difficult integral has been evaluated numerically as described below.

For the important on-axis case, where x = 0, the integration may be performed

1. ‘ ]

i}

analytically, since JO(O)

]
I (v2/8) exp (-y2/4) sin (y7) dy

o0, 7) = A
° T
7 npPY 2
= Ar/2+ (A/2) (1 - 277) exp (-7°) o exp (£7 ) 4¢
o
= A br 34 - - -)

This function is plotted in Figure 9.

3.5 THE NUMERICAL INTEGRATION

The integral for g(x, +) was computed in our Scientific Computer
Facility. We programmed the Scientific Data Systems 9300 Computer with 65
Fortran IV statements. Simpson's method was used. The Bessel function was
generated by a polynomial approximation accurate to 5 x 10-8 absolute error

from the Handbook of Mathematical Functions (Ref. 4.,pn 379f). One hundred

and onz values of y were used each time the integral was evalutated. The in-
tegral was computed at 101 values of x for each of 124 values of T. Time was
saved by storing pacts of the kernel that do not change, and by buffering ihe.
printer. Running time was about 40. minutes, or about 1 millisecond for each

evaluation of the Bessel function.

15
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The computed points were saved on magnetic tape. We displayed the
peints wi h the on-line oscilloscope associated with our SDS 930 Computer,
The Fortran I1 display program allowed us to show stationary frames continu-
ontsly, or to show frames sequentially at any comfortable viewing rate. The

display was usefii in studying the wave motion and in checking the computati n.

Refer to Figures 10 and 11 for plots of wave amplitude g/A versus
X at various values of 7. The compression 4t maximum on-axis amplitude is

plotted in Figure 8, for comparison with the other functions in the soluticn.

3.6 THE TRAPPING CONDITION

An unexpected result of the computed solution ¢f the acoustic wave
15 the fact that the compression is greztest orn axis, for 0 = r - 0,85, Thus.
it is, from the start, a focusing distribution. There is no latency period of
zero or negative focusing before some positive focusing begins. The on-axi.
solution shown in Figure 9 shows that the convergence (reciprocal focal length)

varies lirearly with 7, for 7 << 1.

The two-impulse model is valid for T < 0.85. The first impulse

starts an acoustic wave, and the acoustic wave builds up a distributed lens

nf

increasing convergence., Diffraction of the second impulse will be defeated

if, at the time the second impulse occurs,
, 2
tn/n > (1/2)(x/2xnow) 5

This on-axis /n will be the sum of /n caused by the acoustic wave and Kerr
effect, The acoustic An is a function of beam energy, pulse duration, and ini-
tinl focused spot size. Kerr effect depends on power. Thus the two effects do

not vary che same way with beam size.

3.7 THE TRAPPING THRESHOLD

For optical glass and ocher materials in which Keir effect is weak,

we may calculate the approximate energy threshold for trapping by equating the

17

s



PERKIN-ELMER

Reporc No. 9204

Compression O/A

........... v - T ueerceseasanssett it
0 3.54w
Radial Distance
e o1zl r = 0.21/2%/2
“rm— T————————
v = 0.31/212 v = 0.41/287
RO ﬁ'-...\_’/—""

/2 /2

T = 0.5'1‘/21 T = 0.6'1‘/21

Figure 10, Sound Wave Ccupression at Various Times
After an Initial Impulse
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required axial An with ihe An due to the acoustic wave.

- _ 9cA? r % o 7w
TRAP = 41 L (“i R 2)2(n§ T2 - O/A

We may define the power for the impulse pair as

P = Wit = 3W/2p = 2—‘;%

and substitute T = w/v 50 the trapping power becomes

_ 9c}\2 r n P 3 2

v
TRAP 41 L (“i + 22 - 2 ¢ (@B/3T)(0/A)

P

NJo
O NjOo

The minimum trapping power will be required when the pulse half-time is such

that (2p/3T)(0/A) is a maximum. This maximum is .261, and it occurs when p = 1.22T

2 2 2 2, 2 2
PMIN = 8.64cA n, PV /[n(no + 2) (no - 1) 1

This minimum power depends only on the material properties and the wavelength.

The beam size must be matched to the pulse half-time as follows:
p = 1.22T = 1.22 w/v

“matched ol (77

For values of p/T <<1, O/A = 2p/3T.

Hence in the limit of short pulses or large beams,

P varies as w2/p2.

TRAP
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3.8 NUMEKICAL CALCULATIONS

The acoustic trapping threshold curve for a material ran be ob-
tained with simple calculations. It is onlyv necessary to obtain the sound
velocity, the beam size that watches the pulse half-time, and the minimum

power level. Then simple graphical methods yield the threshold curve.

Sound Velocity: The relevant sound velocity is that for a radially

propagating compressional wave. For solids, use equation (1) in Section 3.4,
The Young's modulus, density. and Poisson's ratio ror glasses are found in the

newer Schott glass catalogs.

9 ;
Example: For BK-7, Y = 8310 kp/mm , p = 2.51 g/cmj, € = 0.208,

Multiply p by 103 to obtain the density in wilograms per cubic meter, and Y

by 9.81 x 106 to obtain newtons per square meter from kiloponds per square

millimeter. Hence v = 4,27 x 103 meters per second.

Matched Beam Size: Let the pulse half-time p be measured at

the half-peak points. Then W atched = .82 pv.

Minimwa Power Level The minimum power level for the material
is
2 2 2 2, 2 27
By = (8-66cr/m) pvn/ [(“o‘* 2%w -’

Example: For BK-7, at » = 694.3 nm, n = 1.45. The critical

power level is 365 kilowatts.

Plotting the Threshold: Use log-log graph paper having equal size

divisions for the horizontal and vertical scales. Draw a horizontal line
corresponding to the minimum power level. Mark the matched point on the

minimum power line, corresponding to the matched beam size,

For a quick, conservative overestimate of the trapping threshold
curve, simply draw a line with a slope of 2 upward from the matched point.

(The angle is 63.5° to the horizontal.)
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For an accurate graph, plot the curve in Table I on a second
plece of log~log paper. Lay the first piece over the second so the axes are
parallel and the matched point is just over che bottom point on the second

graph, Trace the curve.

TABLE I

NUMERICAL VALUES USEFUL FOR
PLOTTING ACOUSTIC TRAPPING THRESHOLD CURVES

Horizontal Axis Vertical Axis
0.91 0.965
1.00 1.00
1.10 1.05
1.25 1.20
1.43 1.43
1.68 1.78
2.00 .36
2.50 3.48
3.33 5.90
5.00 12.8

10.0 55.0
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SECTION IV

AN ANALYTICAL SOLUTION OF THE LASER BEAM
RADIUS EQUATION FOR KERR EFFECT TRAPPING

A high intensity laser beam passing through a material medium can
focus itself into a long, thin filament and propagate without normal diffrac-
tion spreading. This self-trapping phenomenon arises when the medium's re-
fractive index n is higher along the beam axis than along the beam edges.

Such refractive index distribution acts like a series of thin positive lenses,

a3 shown in Figure 12,

The high intensity beam can set up a focusing refractive index
distribution by several physical mechanisms, such as electrostriction, anom-
alous dispersion, and reorientation of molecular dipol» moments. The last
effect is Kerr effect, after its discoverer, John Kerr (1824-1907). 1In
liquids the molecular reorientation can occur in times on the order of 10
picoseconds. The effect is thus virtually instantaneous compared with the
duration of nanosecond laser pulses, but it is much too slow to follow 500
terahertz light wave fields. The local change in index of refraction is
proportional to the local beam intensity. When the beam power is above a
cer~ain threshold power level, the laser beam focuses itself to a smaller
beam size and higher intensity. The smaller, higher intensity beam causes
still stronger self-focusing until the beam has trapped itself at a small

radius, limited by diffraction.

4.1 THE BEAM RADIUS EQUATION
This note sets forth an analysis of Kerr effect trapping, The
analysis is based on a ray tracing equation published by Tien, Gordon, and

Whinnery (Ref. 6). Equation (9) in that article reduces to

BZF-!/AZ2 = a-3 (\/ZHno)2 + (a/no) azn(O,z,t) /Arz (2)
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where
a(z,t) = beam radius to the point where the intensity is
1/e of the peak iatensity,
n(r,z,t} = local index of refraction
n o= undisturbed or nominal index of the medium
) = vacuum wavelength of the laser beam,
r,z = cylindrical coordinates for the beam.
For this equation to be valid Tien, Gordon, and Whinnery require
that

1) "the light beam is...launched with a Laguerre-Gaussian
or Hermite-Gaussian field distribution"

2) "the refractive index of the medium varies slowly in space
(negligibly in an optical wavelength)"

3) the variations in n are small compared with n_

The last two restrictions are violated when the beam is trapped
to a filament with approximately one wavelength radius, and the scattered
light is spread over a wide wavelength range. liowever, the equation can be
used to study the collapse of the beam toward the trapped condition, and to

stud; the phenomenon when the beam power is below threshold.

4.2 BEAM PROPAGATION WITHOUT SELF-FOCUSING

When the beam intensity is weak, the last term in equation (2)
is negligitle. The ray paths are then hyperbolas, The beam radius solution
is

- 2 2o 1/2
a(z) = L(ao £ alz) ¥ (xz/2nnoao)'] (3)

where ao and a, are, respectively, the imitial radius and initial slope of the

1
rays just after entering the medium at z = 0, For example, let * = lum,

n = 1.5, a = 0. 1lmm, a, = -0.001839, Then the beam is focused to a radius of
0.05mm at z = 4,lcm. This is the case of a very gently focused beam. The
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first frame of Figure 14 shows a plot of a(z) for this case . Note that the

vertical, radius scale is greatly exaggerated.

4.3 THE LASER BEAM INTENSITY EQUATION

The lowest order mode for the laser beam has a nearly Gaussian
intensity profile characterized by the radius, a, to the point where the
intensity drops to 1/e of the peak intensity. If the propagation medium is
not too violently inhomogeneous and if the inhomogeneity is radially sym-
metricai, the Gaussian profile is maintained along the beam, although the

beam radius varies because of diffraction and focusing by the inhomogeneities.

The laser power may also vary as a function of time. For Q-switched
pulse lasers generally the pulse energy can be measured and some rough idea of
the time distribution of the pulse can be obtained. For purposes of analysis
we can use a simple pulse shape such as the unit quartic pulse shown in

igure 13. This shape has a continuous derivative and finite extent.
Thus the laser beam intensity is
. 2 2,2
I(r,z,t) = (W/na’) exp (-r /a") q (t;p)

whece W is the pulse energy and q(t;p) is the unit quartic pulse of time

constant p:

q(t;?) - {(15/16;:) (t/p)2(2-t/p)2, 0<sts<2p
0 otherwise,

0f course, a is a(z,t) given by the solution of equation (2), The intensity
distribution is so normalized that
2n ] rce
Jr do [ rdr i dt I (r,z,t) =W

i
o ‘Yo Y

independent of the value of z,
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1/P q(t;p)
15/16p |
3
i
15/32 p
Centroid
le— Spacing
5p/8 _
3
l ]
0 11p/16 P 21p/16 2p t
(15/16p) (t/p)2(2-t/p)° g
(t;p) = 1 10p P)T(2-t/p)” for 0 < t < 2p
WP =10 otherwise

rm q(t;p) dt =1

Jew

Figure 13, Unit Quartic Pulse
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4.4 VARIATION OF REFRACTIVE INDEX WITH INTENSITY

The change in refractive irdex can be expressed in cgs units as

n=n+ %\E2+..”.

where J is the high frequency Kerr constant due to molecular rotation., Thus
the change in index is proportionil to the local intensity for either a plane
polarized or circularly pnlarized seam f{although the constants of proportion-
ality differ for the two cases). Let the constant of propor.ionality be K,

depending on the wavelength, the material, and the beam polarization.

n(r,z,t) = n o+ KI (r,z,t)
In equation (2) the last term pecomes
-3
-a (2 KW/ﬂno) q (t;p)

Since both terws on the right of equation (2) are proportional to
a-3, the solution ai any time will be a hyperbola whose value and slope at
z= § are a_ and a,, respectively, However, the focal point and semiaxes of the

1
hyperboia may vary with time, The equation becomes

32afaz? = f(tya”>

where
2
£ty = O/2m)) - zqu(t;p)/ﬂno,

The solution is

1/2
az,t) - [, +a=n?+ 60 22?2 ]

A negative, zero or complex value of a would be a ron-physical
solucion, This places a restriction on the minimum value of f(t) which occurs
when t = p, We have az(z,p) equal to a juadratic expression i. z, 1In order
that az(z,p) be greater than zeye for all real values of =, the discriminant

2
of the quadracic expressior must be negative., Then the only zeros of a will
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be complex. This condition implies thut f(r) must always be positive. The
minimum value of f{t) occurs when t=p, i.e., at the peak of the laser pulse.

For a valid solution we must have

1 ’
*n/n -_— \._ ’—vn a
A / o “ 2 ( /“ o )
where ‘n, the on-axis increase in refractive index. is
, . 2
(n = KWq(p;p)/ra .

This condivion is equivalent to the Pierce stability criterion L/f - 4. vhere

L and f are the spacing and focal length of leases in a sequence {(Ref. 5).

The threshoid value of KW/p becomes (KW/p) = 2, /'Tn0

tbreshold
Let k be the fraction

k = <Kw/p)/(Kw/p)threshold
Then f(t) becomes

£(t) = (\./Z:rno)2 f1-kq(t;p) /q(p;p) ]

Refer to Figure: 14 through 16 for plots of the beam radius when k = 0.999,
0.95, aa'! 0.85.
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Figure 14, Kerr Effect Trapping at 99 Percent Threshold
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Figure 15.

Kerr Effect Trapping at 95 Percent Threshold
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‘ Figure 16. Kerr Effect Trapping at 85 Percent Threshold
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SECTION V

BEAM TRACING IN THE ACQUSTIC TRAP

The thecry, developed from the two-impulse model in Sections Ii

and III. yields a threshold for acoustic beam trapping which is below the ex-

perimental damage thresnolds for the glassy materials tested, It was solved i
by completely analytical means, using tabulated properties of special functions.

The computer was only used to obtain values for the radial sound wave off the

axis of the beam. That computation was not essential to the solution, although

it did give the following important insight: The refractive index distribution

set up by the acoustic wave is initially a focusing distribution. although its

strength varies with time, However, the theory did nouv 1illow for the continuous

interaction of light and sound, nor did it show how the focusing action develops

with time.

5.1 OTHER FEATURES OF THE GLASS DAMAGE PHENOMENON

A complete theory should also explain the other observed features

of internal, filamentary glass damage, such as the following:

1) The Spectrum of the Side-Scattered Light

A white light flash is seen when the damage event occurs,
Ruby laser light may be shifted from 6943A down to 40003.
Such large shifts can only be explained by a very strong

dynamic refractive index change.

2) Stcrting Location of the Damage Track

Even if the laser is focused at the entrance face of the
gla.s sample, the damage track never begine at the entrance
face. There is always a short intervai between the entrance

face of the sample and the start of the track.
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Exit Face Pitting

Usually the track ends in a pit on the exit face of the
glass sample, As a matter of fact, the threshold for the
exit face pitting appears to be a little lower than the
threshold for track formation. Nevertheless, the phenomena

is different from the type of surface damage reported by

others,

Location of Damage Stars

The damage track is not always continuous; it may start and
stop several times in the sample, Often there is a damage
star on the upstream end of the track. These damage stars
are localized regions of gross fracture., Occasionally

they show discoloration, indicating possible chemical de-
composition., If the damage track extends upstream of the
damage star it usually only does so for a very short distance
compared to the extension downstream from the damage star,
The location of the damage star is intriguing. If the
damage starts in the damage star and then propagates down-
stream to form the track, why doesn't the damage star cast
a downstream shadow and prevent the beam from concentrating

in the thin filament?

Traék Propagation Speed

Since the damage event occurs in nanoseconds, its dynamics
are difficult to follow. There is experimental evidence
that the event that forms the track propagates at about

10 times the speed of sound in the glass., The experimental
evidence does not show unequivocally that the propagation

is either unstream or downstream,

electrostrictively driven acoustic beam trapping.
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5.2 DEFINITION OF THE PROBLEM

Our purpose is to understand how the acoustic beam trap forms, not
how the damage occurs. Therefore we only need consider small acoustic pressure
changes in the material. We will see how these lead to a beam instability when
the power exceeds a certain threshold. The nature of the instability is such
that the beam rapidly focuses itself into a thin filament. The damage occurs
when the beam is in this trapped condition. The instability itself can be
studied by means of a geometric ray tracing equation which includes first order i

diffraction effects. This beam tracing equaiion is equation (2) of Section IV.

The sound wave satisfies essentially the same conditions as those
given in Section III, except that it is driven continuously by the light wave,
rather than running inertially after an impulse, For a gently focused beam,
axial components of the sound wave field are negligible in comparison with

the radial components,

The desired solution will show a graph of the beam radius plotted
versus axial length for each of many small time intervals auring the laser
pulse, The time distribution of the laser pulse can be assumed to be the
quartic pulse distribution described in Section IV, since the actual details
of the shape of the laser pulse do nat have too murh bearing on the threshold

for damage and on the time developmeuc . -2ap.

5.3 THE COUPLED EQUATIONS

The sound wave equation is

azg/m:?' + r'laq/ar + 520/322 =v azo/Atz
’ 2 2
= (1/6vnopo) (no + 2) (n0 - 1) W/0)q(t;p)

o 4 a-a(l-rzlaz) exp (-rzlaz)
The beam tracing equation is

slarz’ = a7 0zm)? v @fend @l 4 D @E - 1) 300,20 /5
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The general solution of these coupled, nonlinear, partial dif-
ferential equations has been left as an exercise for the computer. One
simplification can be made immediately, The beam tracing equation involves
only the second derivative with respect to r of the on-axis sound wave solution.
Since the sound wave equation is linear we may take its Hankel transform ana-
lytically. When z is held fixed, the Hankel transform of ¢ satisfies an
ordinary differential equation in t. This ordinary equation may be solved using
initial values of the Hankel transform, and of its derivative with respect to
time, and assuming a step-plus-ramp driving function. The solution is then
found by taking the inverse Hankel transform., Since the beam tracing equation
involves only the second derivative of the sound wave amplitude at r = 0, and
the inverse Hankel transform involves r only as part of the argument of the
zeroth-order Bessel function, we may pe~form the differentiation analytically
under the integral sign. Thus for each time step ard each value of z, the
sound wave equation can be solved with only one numerical integration. The
use of a step-plus-ramp driving function allows us to take a much coarser

time step than we would require if we used an impvlsively driven equation.

5.4 THE STEP-BY-STEP COMPUTER SOLUTION

The problem is divided up into sections and slices as shown in
Figure 17. In its present state of development the computer program can handle
101 sections. The zeroth section is the entrance face of the solid or liquid
medium,. The initial beam radius and entrance angle are fixed on the zeroth
section., Since the solution irs radially symmetrical, it will be the same in

each radial slice.

The computer program must store values of a for each of the 10l
sections, Also for each section, it must store 40 values of the Hankel trans-
form of the sound wave, and 40 values of the derivative of the Hankel transform
of the sourd wave with respect to time. An array of 101 points is also set
aside for the second derivative of the sound wave with rrspect to r. No
Bessel function storage or Bessel function subprogram is required. Initially

the Hankel transform of the sound wave and its derivative with respect to time

36

B e (B

{ :u, :n

N

Whiailud

g

[ WA

| froion

| s |

‘IMIMMI

'muumx: ‘uuwlwll

C T

.

»
8




Reprrt No. 9204

PERKIN-ELMER

sTsATeuy Buyddeay weag ayjz jo Ax3jawoan -

A331suajul qe=d

Jo . @ 3e
msﬁvwm Emwm

LT 2an8r13

unypan
PInb}T 10 pIIOS

\D\:i

weag
19seq

37

uof3dag 1ed71dLL

22715 1erpey 1ed7dAL




PERKIN-ELMER

Report No. 9204

are set to zero along with the second derivative of the sound wave with re-

spect to r. The solution then proceeds in steps:

1) Solve the beam tracing equation using the Runge-Kutta method.
The axial step size in the solution is 1/5 of the interval
between sections. Values of the second derivative of the
sound wave with respect to r are interpolated by Lagrange

cubic fitting.

2) Store 101 values of the beam radius a., Also save these

values on tape for later plotting.,

3) 1If the time has not yet reached 2,0p, the end of the
laser pulse, advance the time by a small time step and

cbtain the new value of the beam power at that time,

4) TFor each section of the beam compute the second
derivative of the sound wave with respect to r by
using Simpson intergration. At the same time revise
the value of the Hankel transform of the sound wave

and its time derivative for the next time step.
5) Go to 1.

The program parameters are the wavelength, the nominal refractive
ir lex, the initial beam radius and the initial slope of the beam radius at
the entrance face, and the fraction of pulse power divided by theoretical

threshold.

5.5 TYPICAL RESULTS FOR ACOUSTIC BEAM TRAPPING

Figure 18 depicts acoustic beam trapping when the pulse power is
300% of the threshold. There are 11 frames showing the beam radius plotted
versus axial length for 11 different times during the pulse. The first frame
shows the path of the beam when the illumination has just begun, The sixth
frame gives the trace when the pulse power is highest. The 1llth frame shows

the path taken by the light in the trailing end of the pulse,
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Figure 18. Acoustic Beam Trapping at 300 Percent Threshold
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The action may be interpreted by coiasidering that each section of
the team forms an acoustic lens. Initially the lenses have zero power, but
sone of chem build up focusing rower faster than others. The strongest lens

is formed ar the focus of the beam.. As its focusing power builds up in time

it causes the beam to be refncused at some distance downstream, As the gi
strength of the acoustic lens continues to build up, its focal length is '{
shortened so the second focus moves upstream. The second focus likewise forms ]
a third focus and so on. A little after the laser pulse is half over, three gi
definite foci hav. appeared in the 12-1/2cm region plotted. At the same time o
that these acoustic lenses are becoming stronger because of the inertial ;3

properties of tue material, the Jaser pulse power is decreasing. The net i

i
result is regions of sharper aid sharper focus interspersed by regions in which i
the beam radius is increasing. Eventually the beam will be able to escape

1
again to large radii. i
i

Note in the last frame that the sharpest focus occurs the farthest
downstream., This is to Le expected since the focus there is the resulv of

two strong lenses upstream. Another important feature is the motion of the

.
[ORTe—

first Zocus. Notice how it moves upstream in the beam. This is because the
acoustic lenses in the first few sections of the sawple are also developiag

in strength with time,

Sevei~l features of the damage phenomenon are immediately ex-
plain 4. The fact that white light is scattered largely from the region of
the damage stars is easily scen to follow from the fact that the highest

focusing and therefore the highest index of refraccion occur at places that

..
[TRrer———,

become damage star4, Also the track propagates backward, becoming more and

more sharply defincd until it ends in a damage star.. If there are more than }
one, the demage siars occur in backward sequence. Th= farthest downstream :
occurs first, then the next onc upstream, then finally the dama;e star closest 1
to the upstream end of the beam. Thus, the damage =vent does nct cast a shadow i

that gets in its own way.
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The reason whv it is difficult to measure the speed of propagation
of the damage event is now apparent. The intensity varies widely and more tha

one focus region may move past the velocity-sensing optics.

The pit on the exit face of the glass sample is formed by axial
sound wave components winich do become large when the beam is sharply focused.
There can never be a damage pit on the entrance face. The entrance conditions
of the beam are fixed; therefore, the bearm cannot focus itself sharply at the

entrance face of the glass.

All of the quajitative fea*ures of the phenomenon are 2 sharp con-
trast to the phenomenon of Kerr effect trapping, in which there is one focus

region that moves downstream.

41

n

re




BLANK PAGE



PEHK'N-ELMEH Report No. 9204

SECTION VI

DERIVATIONS

A number of derivations are presented in this section. Each one
is the analytical solution of some part of the model for acoustic laser beam
trapping. Iu many cases the results were evaluated by computer programs. In
those cases, an outline of the program and typical plots are given.
6.1 RADIAL ACOUSTIC WAVES UNDER IMPULSE EXCITATION AND UNDER CONTINUOUS

DRIVING FORCES

The crude (but useful) model of Section III divides t:. laser pulse
into two impulses. The first impulse excites an acoustic wave. By the time of
the second impulse the acoustic wave has set up an inhomogeneous rzfractive in-
dex distribution. If the distribution is sufficiently converging, the light

beam from the second impulse will be trappe’' at a small radius.

The value cf the model lies in the fact that the sound and light
equations are decoupled. The light acts only once, instantaneously, on the
material. The resulting sound wave reacts only once, instantaneously, on the
light beam. Although this modei does not represent the actual phenomenon very
realistically, it is relatively easy to analyze and it does give jood valuer

for the trapping threshold.

The model can be improved slightly by computing the sound wave
response to & continuous driving force applied %y the light for the duraticn of
the laser puise. In that case, the sound wave, as it develops, should focus
the beam. To treat the fncusing problem, however, it would be necessary to
calculate the radial sound wave in many cross sectiocns of the beam. An alter-
netive is to consider the case where the light pulse is so weak that the acoustic
waves do not focus the beam significantly. It is then still possible to compare

the acoustic response to a continuous driving force with the impulse response.

When we made the calculation, we found that the response was basic-

ally the same. There was a phase delay duz to the later arrival of the majority
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of the light energy, and the amplitude of the response was reduced slightly as
the pulse half-time increased. Nevertheless, the same initial focusing dis-
tribution followed by an outward propagating ripple and slow settling of the
wake was observed. These results increase our confidence in the validity of

the two-impulse model of Section III.

The Sound Wave Equation:

Let 0 be the acoustic compression, and r be the radius in cylin-

drical coordinates. The radial sound wave equation becomes

a%0/3c? + £ a0sar = 3%/3t% - (A + BEY(L - £2) exp(-rd)

where the driving term has the Laplacian of a Gaussian radial distribution (as
before) and a step-plus-ramp temporal distribution. (The general pulse tempo-
ral distribution may be approximated to any desired degree of accuracy by a
continuous series of steps and ramps.) The equation is Hankel transformed

by multiplying it by rJo(r) and integrating from O to &, In general, the Han-
kel transform of the Laguerre polynomial is

[ exp-eDn D) e3 (or)ar = (/201 0/ exp(-p7/4)
0

Our transform has Ll(rz) =1 - rz, so the transformed equation becomes

3%5/3t% + p%F = (4 + Bt) p? exp(-p?/4)/8

where

k2
)

a(p,*) = i o(r,t)r Jo(pr)dr

{s the Hankel transform of the compression and

r.(razc/arz + 9c0/dr) Jo(pr)dr = -p25

e}

1s a known trarsformation. (See Ref. 7).

The transformed equation is just the one-dimensional wave cquation
with a step-plus-ramp driving “erm. This forced equation is easily solved by

Laplace transforms. (It could even be solved for a unit quartic pulse forcing
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term. That solution, however, would not be particularly useful later in the
general problem of acoustic focusing.) The solutien for the Hankel transform

of the compression is
5(p,t) = T(p,0) cospt + [35(p,0)/3t] p~ sinpt

-1 2
-[A(cospt-l) + Bp (sinpt-pt)] exp(-o /4) /8
given the initial "position" T(p,0) and "velocity" [3T(p,0)/3t] of the compression.

In order to evaluate the acoustic response to a driving function
of arbitrary temporal distribution by a continuous step-plus-ramp approximation,
it is necessary to have “he "velocity" as a function of time also. Then the
"position" and "velocity'" at the end of the timestep become the new initial
"position" and "velccity" for the next timestep. The velocity is obtained by

simple differentiation:
35(p,t)/3t = ~T(p,0) psinpt + [3C(p,0)/3t] cospt
-[-Apsinpt + B(cospt-1)] exp(-pZ/A)/B

Intepgral Representation of the Sound Wave Solution:

The acoustic compressior is now obtained by the inverse Hankel

transform.

o(e,t) = | lp,t) pI_(pr)dp
o
"%
= J 16(p,0) pcospt + (35(p,0)/3t] sinpt
0

-{Ap(cospt-1) + B(sinpt-pt)] exp(-pzlh)/B} J (pr)dp

We note that the term T(p,0) is multiplied by p in the integral. Thus, if Cp
is always evaluated, rather than ¢ alone, there will be no division by zero

at p=0.

Before the start of the optical pulse at t=0, the medium is at
rest. Thus, ¢(r,0) = 0(p,0) = 0. In th&case of an extremely short optical
pulse there may be an initial velocity at t=0, as in Sectlon III. The initial
velocity due to an iupulse of Gaussian spatially distributed light isc
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30(r,0)/3t = (1-r2) exp(-r’)

with the Hankel transform

35(p,0)/3t = p° exp(-p>/4)/8

as before.

Method of Computation:

The integral representation of the sound wave solution above was
checked by computing and displaying the wave. This computer check was impor-
tant because the integral representation is a starting point for further reduc-

tions to the computing formulas used in the beam tracing program.

The only input variable for the computation is the pulse half-time,
measured in units of the material time constant. Time runs from 0 through 10
material time constants in steps of 0.1 time constant. The unit quartic pulse
starts from zerc at T=0 and is evaluated after each timestep, for finite pulse

half-times. If the pulse half-time is zero, the program computes and stores the
iritial velocity 30(p,0)/dt as above.

For every pulse halftime entered, the program computes a movie of
101 frames. In each frame the wave amplitude is plotted at 21 points along the
radius scale, from O to 5 beam radii. After computation the maximum amplitude
range was found to be -0.05 to +0.34 for the impulse-excited wave, and less for
other excitations. The frame consists of 23 words of 24 bits each. The first
word contains the number of points, not counting the Oth point; it is 20 in this
case. The next word contains the number of repetitions for the frame, equal
to the ratio of the timestep for this frame to the shortest timestep in the
movie. Since all the timesteps are equal in this program, the number of repe-
titions is 1 for each frame. The remaining 21 words contain the points packed
for oscilloscope display. The leading 4 bits contain a code number 7, causing
the oscilloscope to draw intensified vectors from the last point displayed to
the new point. The next 10 bits specify the scaied value of the radius, and
the 10 least significant bits are the scaled value of the amplitude. The words
are written in BCD coding, 16 octal fields 8 characters wide, without spaces.

A graph of every 4th frame was also printed as a quick check un the computation.
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The Bessel fu ction was computed according to a polynomial approxi-

mation {Rcf. 4). For argument Z less than or equal to 3,

(z/3)2

1+ A(a0 + Aay + A(a2 + A(a3 + A(a4 + Aas)))))-

A

J,(2)

i

For larger arguments,

A=3/2

J (2) = (b + (b, + A(b, + A(by + A(b, + A(b5 + Ab.))))))-

-1/2
cos(Z + e+ Ale; + Ale, + My + A(e, + A(c5 + Ac6))))))2

The coefficients are:

a = -2.2499997 bo.= +0.79788456 ¢, = -0.78539816
a, = +1.2656208 b1 -0.00000077 < -0.04166397
a, = ~-0.3163866 b2 -0.00552740 <y -0.00003954
ay = +0.0444479 b3 -0.000G9512 Cq +0.00262573
& = =0.0039444 b4 +0.00137273 °, -0.00054125
ag = +0.0002100 b5 -0.00072805 cs -0.00029353

b6 +0.00014476 6 +0.00013558

These formulas are supposed to give correct results to within 5 x 10-8 absolute

error.

At first we attempted to evaluate the integral representation with
a 2l1-sample Simpson approximation. However, the solution did not vanish suf-
ficiently as T approached 10. After the ripple passed out off the movie to the
right and the wake settled, a low-spatial-frequeiwy ripple seemed to move back
toward the left. This i3 explained as insufficient cancellation by the sinpt
and cospt terms, which have wavelengths of 0.628 at T=10. For a 2l-sample
Simpson approximation over the range 0 to 5 the sampling interval is 0.25, or
2.5 samples per wavelength. Therefore, we changed to a 4l-sample Simpson
approximation over the same range, taking 5 samples per wavelength, to achieve

satisfactory results.
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When we spesk of a 41-sample Simpson approximation we are including
the sample at zero, which does not contribute to the i:.egral. Thus, in the
entire movie 40 samples of the integral were .aken to evaluate each of 21
points in each of 101 frames, 40 x 21 x 101 = 84,840 samples in all. Each
sample requires a value of the Bessel function. To save running time, we set
up a table of the 41 x 21 = 861 values of the Bessel function actually used.

Let i be the index for r values, and let j be the index for p values. Then

r, = 0.254, i=0,1,...,20
ﬂj =00125j; j =0,1,...,40
Jij = Jo(rinj) = Jo(0.031251j)
Clearly, Jij = in, and Joj = Jio = 1, so the table contains many duplicate

entries. However, we could not think of a simple indexing scheme to reduce

the number of entries by eliminating redundancy, so we stored the entire table
as it stands in computer memory at the start of the program. Various compli-
cated indexing schemes are possible, of course, but none of the ones we thought

of could be computed quickly.

Three adcitionai working arrays are required to compute the integral,
Each array has 41 elements. It is necessary to save the values of p;(p,t =
timestep) and Ag(p,t=timestep) /At after each frame, in ocrder to have pa(n,0)
and 3g(p,0) /At for the next frame. Also, the kernel of the integrai (apart
from the factor Jo (pr)) does not involve r, so 41 samples of it may be saved
and used repeatedly in each frame, It is useful to include the Simpson weight-

ing coefficients as part of the kernel.

Finally, the 21 points in each frame were stored so that they could be

written as a single record for each frame.

The program is carried out i. steps as follows. Here the equal sign
means place the value of the expressiun on the right into the cell named on the
left,

1. Create the Bessel function table.

Jij = Jo (1jdpdr), £ =0,1,...,20; § =0,1,...,40

where dp = 1/8 and dr = 1/4,
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ks
:j 1510 3
308

Read p, the half-time of the pulse. If there are no more

values of p to read, stop.

Clear working arrays.
t =0; hj = kj =0, j=0,1,...,40
where t is the time, hj is E(pj,O)

and kj is the jth sample of the kernel.

Set the initial ''velocity".
dj 0 if the p is non-zero
d, § exp(~ p /A)/S, j =0,1,...,40 is p is zero

where dJ is ac(pJ,O)/at

n

Go to 9.

Compute the step and ramp coefficients.

= q(t-dt;p), b = [q{t;p)=al/dt
where q is the unit quartic pulse of Section IV, and 4t
is the timestep, 1/10.

Compute the kernel. Also, compute the values of "position"

and "velocity' required for the next timestep.

Do the next 6 replacements successively as j takes on the
values 1,2,...,40.

2
exp(-p,/4)/8
apj(cospjdt-i) + b(sinpjdt-pjdt)
h,c dt + d,sinp.,dt ~ ef
i ospj e an e
(1/3) dp 2(jmod2+1)g

e
f
g

n

~h.,sinp.,dt + d cospjdt ~ e[-apjsinpjdt + b(cosp ,dt ~ 1)]

3

Finally, adjust the end sample of the kernel.

kuo = ky0/2

Compute the sound wave solution at 21 radial points.

Simultaneously print them every 4th timestep.
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40
sp =Tyl kg 1.=0,1,...,40

9. Pack the points as described before into 21 words and write

them on magnetic tape.

10. Take the next timestep. If this is the last frame, go to 2.
Othervise,

t =t + dt

and go to 6.

This 87-statement SDS Fortran IV program required 1 minute 54
seconds for compilation and 4 minutes 12 seconds to load and run four cases
with p equal to 0, 0.5, 1, and 1.5. Later we used a second program to place
corresponding frames of the four movies in four quadrants of a single frame
of a new movie. The latter movie permitted us to make phase and amplitude

coniparisons for the four cases.

The results are plotted and reproduced in Figures 19 through 24,
for t

0 tot =7.1. The upper left quadrant of each frame shows the response

for p = 0, the upper left for p = 0.5, the loser left for p = 1, and the lower

right for p = 1.5.
6.2 THE LOCAL LENS ESTABLISHED BY A SINGLE LASER IMPULSE

A laser pulse whose‘half-time was negligible compared with the
material time constant would pass through a transparent dielectric on a hyper-
bolic path without being focused appreciably by electrostriction, because of
the time required for acoustic compression. Nevertheless, the medium would
be set into motion, and the focusing power would develop with time. An analysis
of this model shows how a single impulse can set up & localized acoustic lens
at the initial focus of the laser beam. Because the acoustic lens is localized,
it can cause a second focus for the laser beam, provided that the next laser
impulse comes before the sound wave has subsided. This behavior may be con-
trasted with the behavicr in Kerr effect trapping, where only one focus would

occur under such conditions.

The second term on the right-hand side of equation (2) of Section

IV is the focusing term in the beam tracing equation,
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(a/n ) 3%n(0, z,t)/3c"

Derivatives of the rerractive index are proportional to the acoustic compression.
These can be evaluated analytically at r = 0. The result will be the dependence

of the focusing term on the initial hyperbolic beam radius.

We are therefore interested in the second derivative of the acous=
tic compression along the beam axis as a function of z and t. This quantity
is proportional to the coefficient of the focusing term. We will use the
integral representation of the compression when excited only by an initial
impulse. To get the full dependence on beam radius, we will work the problem

through in unscaled, physical coordinates.
The path taken by the beam through a homogeneous medium is

a(z) = [(ao + 812)2 i (Kz/Zﬂnoao)zjl/z

as in equation (3), Section 1IV. The laser beam intensity is

I(r,2,t) = (Wra) exp(-r-/a’) [8(t) + 8(t-5p/8)]/2
where the spacing 5p/& between delta functions corresponds to placing an impulse

at the centroid of each half of the unit quartic pulse.

The force exerted on the medium by ele:trostriction, assuming the

Clausius - Mosotti relation applies, is

f = (no + 2) (no -1 9 I/3noc

The velocity field after the first impulse is
o+
~ — N +

J fdt=gu (r,2z,0)

-t

where g is the average density of the medium, by conservation of linear momen-

tum, and the compression is the negative divergence of the displacement,

- —

C==9:u
Thus, in cylindrical coordinates, taking the time derivative of the above

equation,

[ ¥ 1)
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30 (r,z,04)/3t = = ¥ + u (r,z,0+)

o+

= «(ni + 2)(n§ -1) Vz-l I dt/3 nocg

= -[w(nz + 2)(n§ - 1)/6n°cgﬂaz]
{r-l drd exp(-rz/az)/ar]/arj

4 2 . 2 2,2 2,
= (2W/3n n cga ) (no + 2) (no = 1) (1 -r"/a )exp(-rzlaz)
The Hankel transform is easily evaluated as

35(p,2,04) /3t = (2/3tn cga’) (n> +2) (n - 1) -

PQ

| @/a) 3 [@)(x/a)] {1 - r/a®) exp(-r?/a®) d(x/a)

(o]

= (W/12 =« nocg) (ng + 2) (nz - 1) pz exp(-aszJA)

The material was in a state of rest before the iritial impulse. so 0(p,z,0+) = 0.
Also, there is no forcing term after the impulse, ss the intensity drops to zero
again, so A = 3 = 0. Thus, by substitution in the integral representation of

the solution we obtain

©
n

o(r,z,t) = | [5(p,3,0+) /3t] sin(pvt) J_ (or) dp

o

-2
Cjo exp(-szpzl4) sin(pvt) Jo(pt) dp
o]

it

where we have inserted the velocity of sound v and
C = (W12nn cgv) (nz + 2) (n2 - 1)
o o o

We may now obtain 320(0,x,t)/5r2 by differentiating under the integral sign.
We have

azjocpr)/a:z = [1,(pr) - J_(pr)] p?/z

and

3,(0) =0, J (0) = 1.
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This leads .0

o0 b)
32000, 2,t) far? = -(c/2) | o* exp(-a%6/4) sin(pve)do
0

The remaining integral is just a Fourier transform. A useful property of
Fourier traasforms permits us itc simplify the integral further. 1If

o

F(y) = I £(x) sin(xy) dx for y > 0
o

2
is the Fourier transform of f(x). then the Fourier transform of x m f(x) is
-p" d2m F(y)/dyzm. Thus we need »-'y evaluate

© K

2 " 22 -
K = J exp(~a p2/4) sin(pvt) dp = Im J exp(-a p /4 + ipvt)dp !
) )

[ ]

where Iml ] denotes the imaginary part. By completing the square in the
exponential and shifting the variable we can reduce the remaining part of

the integrail to a finite interval.

expl - (ap/2 - ivt/a)zj dp exp(-v2t2/a2)}

Let € = ap/2 - ivt/a; then

-]
o 22,2 T -2,
K Im 1(2/8) exp(~v't /a") J-ivt/a exp(-T ,d§J
i) _"ivt/a -
= In {2/ exp(-v't2/aD)] [ exp-syer - | expl-rhyer ||
0 0

Now let M = =E/i and take only the imaginary part

vt/a

. 2 2 2
K= (2/a) exp(-v t2/a ) exp(n’) dn

n
)
o
With the above result, the focusing term becomes

3%0(0,2,t)/3r2 = -(c/2)d K/ a(ve)”
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It is now convenient to change .o scaled coordinates. We l«t T = vt/a so

2 2 - r T -
d07c(0,z,t)/Ar" = -Ca 5d4 Lexp(-TZ) J exp(nz)dn./d'r4
o -

AT

-
3, (12 - 481% + 16‘r4)exp(-T2)j exp(nz)dn‘
ry i

n

-ca™ 201 - 87
L

For very small values of T we may replace the exponentials by 1 and drop all

2
terms of order T or less.

Then, =

ST 6 £z

2 - -
AT0(0,2z,t << a/v)/ar2 > -8Ca = =8Cvt a *T

As the terms in higher powers of T become dominant, the crefficient of the

focusing term becomes even more lccalized near the original focus.
T
2, ! 2
The Dawson integral D(T) = exp(-T") J exp(n )dn is tabulated (Ref. 4,

p. 319). For reference, other derivatives ace a follows:

dp/dr =1 - 27D
2 2 2
d°D/dTtc= =21 + (417 = 2)D
d30/d73= QTZ - 4 + (127 - 873)0
dQD/dTaa 20T - 873 + (i2 - 48T2 + 16T4)D

An asymptocic expansion for D is

Lim D(T ~ ®) = -1 exp(-12) /72 + (1/27) [1 + 1/21% + 1 - 3/(27))2

+1-+3: S/(Z'rz)3 4004

Bach of the derivatives of D becomes 0 as T approaches infinity because the
polynomial terms are cancelled by subtraction. Thus, the formulas are mathe-

matically correct, but inconvenieat for computation for large values of T.

The coefficient of the focusing term was computed and plotted
versus z in Figure 25. The function of a was given by equation (3) of Section
1V, plotted in the first frame of Figure 14. In Figure 25, reading left to
right and top to bottom, we see the local development of the focusing coeffi-

cient as T runs from O to 2. 1In the two-impulsc model of trapping, the second
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impulse could arrive anytime before T = 1.2 and still pass through a converging

acoustic lens. If the pulse half-time were much longer, it would first be

focused, then defocused.

In the plot the coefficient at the iritial focus appears to
develop with 2 phase just twice as fast as the zoefficient at the left-hsnd
edge, and the amplitude i: 32 times greater. This is because of the 2 to 1

ratio ¢f values of a.

The Dawson in‘agral was computed by running Simpson integration,
using a step size of 0.0005. (A step size of 0.05 was too large for stable
computation beynnd about T = 4.)

Let
001j

0.
J f exp(nz)dn
o]

o
1

Than

d =0
o

t = 0.001j d

]

N 4 2 - 2 b
J dj_1 + (0.0005/3} 1exp[(t-0-001) 1 + 4 expr (£-0.0015)°] + exp(tz)}
defines the running Simpsen integral used.
6.3 STEP-BY-STEP SOLUTION OF THE COUPLED EQUATIONS

The solution of the coupled sound and beam radius :quations has al-
ready been discussed in Section V. The actual formulas used by the computer

program will be presented here.

The stzp-plus-ramp driven sound wave solution required becuvmes

? 2 o -
3°0(0,z,t)/or” = -(1/2) J p2 {E(p,z,O)pcospt + [aG(D,Z,O)/Bt] sinpt
o
2 22 n}
-(a"/8) exp(~a“0°/4) [Aap(cos aot-1) + B(sin apt-anﬁ)J_dp
G(p,z,t)p = B(p,z,0,p cospt + [3F(p,z,0)/dt] sin pc

-(a2/8) exp(-azpzlé)[Aap(cos spt-1) + B(sin ast-apt))

RT—
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¥0(p,z,t)/ot = ~0(p,z,Mp sin pt + (35 (p,z,0)/at] cos pt

-(a2/8) exp(-azpz/h}rmAap sin apt + B(cos apt -1)]

These may be evaluated by Simpson integration as lescribed before in Subseccion
6.1. The equations now include a = a(z,t), which is ohiained by beam tracing
before each timestep. The coefficient of electrostriction can be entered sep-

arately, because the sound wave equation is linear.

For the Runge-Kutt solution of the beam tra:ing equation it was
necessary to interpolate between points where the focusing term was knovn. We
used the Lagrange cubic fitting formula. If interpolation is required between
xn and Xn+1' where Yn-l’ Yn’ Yn+l, Yn+2 are known ordinates for eaqudlly spaced
abscissas, and £ = (X-XnY/h is the fraction of the distance from the last abscissa

to the point of interpolation divided by the step size,

then,

Y(X +Eh) = -FE-DE-) Y /6 + %-1) (E-2) Y /2

(A (-2 X, /2 + FEEAD) Y ,/6

n+2
See Ref. 4, pp. B878f.
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